Nanooptics
The physical basis of laser nanostructuring of solid surfaces and bulk are studied and the corresponding methods are developed in the laboratory headed by N. M. Bityurin.
Currently, laser nanopolymerization is the main method of producing solid nanostructures of arbitrary three-dimensional configurations. Structures are formed by a focused laser beam that initiates photopolymerization in the appropriate medium. This technology is in great demand in photonics, microfluidics, in problems of three-dimensional data storage, as well as in biomedical applications.
An important issue is the resolution of this method of three-dimensional nanostructuring. The resolution is limited by fluctuation inhomogeneities of polymer gel that is a network of entangled macromolecules. A theoretical model was developed which allows assessing a minimum size of structures. Possible ways of increasing the resolution were proposed.

It was shown theoretically that the diffusion of a specially introduced inhibitor may improve resolution of the nanostructures produced by laser polymerization.


This effect was verified experimentally in collaboration with the Laser Center IESL FORTH (Heraklion, Greece). By introducing the inhibitor into a polymerization medium and choosing appropriate irradiation regime ensuring significant inhibitor diffusion, samples of pho tonic crystals of hybrid organic-inorganic polymer with a grating period of 400 nm were obtained. It is the best result obtained by the traditional multiphoton laser polymerization.

Another way to produce nanostructured materials is laser treatment which leads to formation of nanoclusters or nanoinhomogeneities in the initially homogeneous material due to developing instabilities. The inhomogeneities change the optical properties of these materials dramatically, which is of great practical importance. Of particular significance is creation of materials capable of nanostructuring in this fashion. IAP RAS researchers developed a method of UV-induced production of gold nanoparticles directly in a solid polymer matrix doped with gold precursor, without introducing special reducing agents and stabilizers.
A technology of producing bulk samples with record high concentration of gold precursors (~1019 cm-3) by means of polymerization was developed. UV laser irradiation of a sample may be used to form two- and three-dimensional structures in the polymer matrix.
Using an updated method of measuring fast optical nonlinearity by spectrally resolved two-wave mixing with the aid of a femtosecond erbium-doped fiber laser it was shown that the formation of gold nanoparticles leads to a significant increase in the nonlinear refractive index of the medium at wavelengths of 1530–1600 nm (infrared region) in UV irradiated areas.
