МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр Институт прикладной физики Российской академии наук» (ИПФ РАН)

УТВЕРЖДАЮ:

Зам. директора по научной работе

М.Ю. Глявин

2012г.

Рабочая программа дисциплины

Океанология

Уровень образования высшее образование – подготовка кадров высшей квалификации

Научная специальность

1.6.17. Океанология

(шифр, наименование)

Форма обучения

очная

1. Место и цели дисциплины в структуре программы подготовки научных и научнопедагогических кадров в аспирантуре

Дисциплина «Океанология» относится к числу специальных дисциплин программы подготовки научных и научно-педагогических кадров в аспирантуре (далее – программы аспирантуры), является обязательной для освоения и изучается на втором году обучения, в четвертом семестре.

Освоение дисциплины опирается на знания, умения и навыки, сформированные на двух предшествующих уровнях образования и на первых годах обучения в аспирантуре. В частности, на знания, умения и навыки, полученные в ходе освоения таких дисциплин, как «Геофизическая электродинамика», «Механика сплошных сред», «Термодинамика», «Физика колебательных и волновых процессов», «Обратные задачи физической диагностики» и т.п.

Основной целью освоения дисциплины является формирование у аспирантов фундаментальных знаний о физических процессах в гидросфере, их механизмах и взаимосвязях.

2. Планируемые результаты обучения по дисциплине

Аспирант, освоивший дисциплину «Океанология», должен:

Знать динамику процессов на поверхности и в приповерхностном слое океана.

Знать основные нерешенные научные проблемы, обсуждаемые в рамках данной дисциплины; недавние и планируемые новаторские эксперименты, а также активно действующие в рамках рассматриваемых тематик научные коллективы.

Уметь систематизировать основные источники знаний об океане, физических процессах, происходящих в нем; пользоваться простейшими количественными и качественными оценками при анализе основных разномасштабных динамических процессах, проходящих в океане.

Владеть современными методами анализа и моделирования различных физических процессов, протекающих в гидросфере.

По результатам освоения дисциплины «Океанология» аспиранты сдают кандидатский экзамен по научной специальности 1.6.17. Океанология.

3. Структура и содержание дисциплины

Объем дисциплины составляет 3 зачетных единицы, всего 114 часов, из которых 34 часа составляет контактная работа обучающегося с преподавателем (32 часа занятия лекционного типа, 2 часа мероприятия промежуточной аттестации), 36 часов — подготовка к сдаче кандидатского экзамена, 44 часа составляет самостоятельная работа обучающегося.

Таблица 1:

Структура дисциплины

	1 0	01			
		в том числе			
	Всего, часов	Контактная работа, часов			Сомостоятом мая
Наименование раздела дисциплины		Занятия лекционного типа	Занятия се- минарского типа	Всего	Самостоятельная работа обучающе- гося, часов
1. Вводная лекция океанологии. Динамика моря.	3	2		2	1
1.1. Течения	4	2		2	2
1.2.Водные массы и вертикальная структура океана	4	2		2	2
1.3. Ветровые волны	8	4		4	4
1.4. Длинные волны в океане	6	2		2	4
1.5. Волны Россби и синоптические вихри в океане	6	2		2	4
1.6. Внутренние волны	6	2		2	4

Итого	114				
Аттестация по дисциплине – кандидатский экзамен				2	36
ская Океанология					
исследования океана и космиче-	6	2		2	4
2.3. Радиолокационные методы					
2.2. Акустика моря	6	2		2	4
2.1. Оптика моря	12	6		6	6
морей и внутренних водоемов					
зическим методам исследования	3	2		2	1
2. Вводная лекция по радиофи-					
1.8. Теория турбулентности	6	2		2	4
1.7. Транспорт примесей и наносов	6	2		2	4

Содержание дисциплины

Часть 1. Динамика моря

1. Введение

1.1. Течения

Уравнения движения (Эйлера, Лагранжа, Навье—Стокса, Рейнольдса). Уравнение неразрывности, уравнение гидростатики. Силовые поля в океане, вызывающие течения. Понятие о баротропности и бароклинности океана. Геострофические течения. Экмановские пограничные слои. Ветровая крупномасштабная циркуляция океана. Основные течения в океане (Гольфстрим, Куросио, экваториальное противотечение). Динамика русловых потоков.

1.2.Водные массы и вертикальная структура океана

Основные закономерности формирования и изменчивости полей температуры, солености и плотности вод. Климат океана. Причины стратификации и вертикальная структура вод океана; закономерности ее формирования. Пространственно-временная изменчивость гидрофизических полей. Водная масса, ее основные характеристики. Трассеры водных масс. Классификация водных масс. Условия формирования и закономерности распространения основных водных масс океанов. Промежуточные, глубинные и придонные водные массы океанов. Водные массы окраинных и внутренних морей. Особенности структуры вод отдельных океанов. Межокеанский «конвейер». Водные массы и меридиональный перенос тепла и пресной составляющей в океанах. Климатическая изменчивость характеристик водных масс. Тонкая структура гидрофизических полей, механизмы ее генерации.

1.3. Ветровые волны

Основы гидродинамической теории поверхностных гравитационных и гравитационно-капиллярных волн. Дисперсия, дисперсионные уравнения, фазовая и групповая скорость волн. Короткие и длинные волны. Линейные и нелинейные волны. Энергия волн и ее поток. Ветровые волны: статистические и спектральные методы описания. Механизмы генерации ветровых волн и законы их развития. Методы расчета элементов и спектральных характеристик ветровых волн. Ветровые волны открытого океана и прибрежной зоны, их трансформация у берегов; ветровая зыбь. Основные механизмы генерации ветровых волн. Статистическое описание взволнованной поверхности. Развитое волнение. Автомодельные спектры и распределения вероятностей ветрового волнения. Спектральные методы расчета ветровых волн. Обрушение волн и насыщение спектра. Трансформация ветровых волн на мелководье и течениях. Ветровая рябь. Зыбь. Индуцированные течения в приповерхностном слое.

1.4. Длинные волны в океане

Длинные гравитационные волны. Уравнения мелкой воды. Длинные нерегулярные длиннопериодные волны — сейши, барические волны, штормовые нагоны. Топографический захват волновой энергии (волны Кельвина, Пуанкаре и др.) и частотные свойства шельфа. Резонансные колебания в бухтах и гаванях (сейши, тягуны). Наводнения. Волны цунами, их возникновение, распространение, накат на берег. Районирование побережья по степени цунамиопасности. Приливные волны в океане; приливообразующие силы. Статическая и динамическая теории приливов и их современное развитие. Приливные течения. Приливы открытого океана, морей и прибрежной зоны. Приливные карты и их анализ.

1.5. Волны Россби и синоптические вихри в океане

Квазигеострофическое приближение. Приближение бета-плоскости. Баротропный радиус деформации Россби. Планетарные и топографические волны Россби. Волны в тропической зоне. Экваториальные волны. Баротропная и бароклинная неустойчивость. Баротропные и бароклинные волны Россби. Метод контурной динамики.

1.6. Внутренние волны

Внутренние волны на границе двух сред. Внутренние волны в океане с непрерывной стратификацией. Элементы нелинейной теории внутренних волн. Взаимодействие внутренних волн с течениями в океане. Генерация внутреннего прилива при трансформации баротропного прилива на континентальном шельфе. Механизмы генерации и диссипации мелкомасштабных внутренних волн. Взаимодействие внутренних волн с ветровым волнением (кинематический, пленочный и каскадный механизмы).

1.7. Транспорт примесей и наносов

Основные уравнения для примеси. Диффузия примеси в стратифицированном океане. Дрейф льда. Пленки поверхностно - активных веществ и их влияние на взволнованную морскую поверхность. Размывы дна и эрозия берегов под действием волн и течений.

1.8. Теория турбулентности

Гидродинамическая неустойчивость. Неустойчивость тангенциального разрыва. Неустойчивость плавного плоскопараллельного потока жидкости. Уравнение Орра-Зоммерфельда и уравнение Рэлея. Теорема Рэлея об устойчивости плоскопараллельного потока идеальной жидкости. Развитая турбулентность. Гипотезы Колмогорова о статистических свойствах мелкомасштабной турбулентности при больших числах Рейнольдса. Инерционный интервал. Закон 2/3. Уравнения Рейнольдса. Уравнение баланса турбулентной энергии. Полуэмпирические теории турбулентности. Примеры турбулентных геофизических потоков (логарифмический пограничный слой, слой Экмана). Влияние плотностной стратификации на характеристики турбулентности.

Часть 2. Радиофизические методы исследования морей и внутренних водоемов

ВВЕДЕНИЕ. Океан как объект дистанционного зондирования. Задачи дистанционного зондирования. Физические поля и физические эффекты, лежащие в основе методов дистанционного зондирования. Проблема интерпретации данных.

2.1. ОПТИКА МОРЯ.

а) Распространение света в мутной среде.

Фотометрические характеристики поля излучения. Мутная среда и ее оптические характеристики. Оптические характеристики шероховатых поверхностей. Уравнение переноса излучения (УПИ). Теорема оптической взаимности. Представление светового поля заданных источников через функцию Грина. Приближенные методы решения УПИ. Оптические свойства морской воды

б) Распространение света в воде от естественных и искусственных источников.

Солнечный свет в море. Ослабление облученности с ростом глубины. Спектральный коэффициент яркости морской поверхности, факторы, определяющие цвет моря. Ослабление мощности и уширение узкого светового пучка при прохождении через водный слой. Распределение яркости от точечного изотропного источника и его связь с распределением облучен-

ности в узком световом пучке. Распространение и рассеяние коротких световых импульсов в воде. Закон спада отраженного водой лазерного импульса.

в) Дистанционное оптическое зондирование океана.

Оптическая диагностика ветрового волнения. Определение содержания биологического вещества в воде по спектру отраженного морем солнечного света. Лазерная диагностика океана: уравнение лидарного зондирования, определение оптических характеристик воды по сигналу обратного рассеяния, лидарный метод наблюдения внутренних волн, лазерная флуориметрия воды, лазерная батиметрия. Подводное видение. Дальность визуальной видимости (теория Дантли – Прайзендорфера). Подводное телевидение. Уравнение переноса изображения. Уравнения для определения дальности действия и разрешающей способности электронных систем видения.

2.2. АКУСТИКА МОРЯ.

а) Звуковые волны в море.

Волновое уравнение. Плоские, сферические и цилиндрические волны. Отражение и преломление звука на границе вода-воздух и вода — морское дно. Закон Снеллиуса. Формула Френеля. Полное внутреннее отражение. Основные факторы, определяющие скорость звука в морях и океанах. Лучевое описание звукового поля в море. Рефракционные явления при распространении звука в море. Зоны конвергенции и зоны тени. Понятие об океаническом волноводе. Собственные волны в акустическом волноводе. Интерференция звуковых волн.

б) Статистические явления при распространении звука в море.

Рассеяние акустических волн на случайных неоднородностях. Флуктуации амплитуды и фазы. Объемные, поверхностные и донные неоднородности. Теория поверхностной, донной и объемной реверберации.

в) Методы генерации и формирования акустического поля в море, методы приема и обработки акустических сигналов.

Излучатели и излучающие антенны. Пьезокерамические, электромагнитные и электродинамические излучатели. Параметрическое излучение звука в море. Гидрофоны и приемные антенны. Акустические шумы в море, происхождение и спектральный состав. Спектральная и корреляционная обработка сигналов в присутствии шумов. Акустическая томография и акустическая термометрия океана. Гидролокация. Пассивная и активная гидролокация. Уравнение дальности гидролокации. Понятие о методах подводной акустической связи, эхолокации рыбных косяков, съемки рельефа дна и определения глубины места.

2.3. РАДИОЛОКАЦИОННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОКЕАНА И КОСМИЧЕСКАЯ ОКЕАНОЛОГИЯ.

а) Рассеяние радиоволн морской поверхностью

Метод малых возмущений. Приближение Кирхгофа. Двухмасштабная модель поверхности.

б) Радиометрические методы диагностики океана.

Связь между радиационной и термодинамической температурой поверхности океана. Влияние атмосферы, поверхностно-активных пленок, ветровых волн и приповерхностного инверсного слоя на работу радиометров. Многоканальная радиометрия. Точность радиометрических измерений. Радиометрическая диагностика ветрового волнения. Критические резонансные явления в собственном излучении шероховатой поверхности. Методика определения характеристик гравитационно-капиллярных волн. Дистанционное обнаружение нефтяных пленок.

в) Исследование океана методами активной радиолокации.

Регистрация изменчивости уровенной поверхности океана (морского геоида). Проявление течений и синоптических процессов в сглаженном рельефе морской поверхности. Возможности спутниковых радиовысотомеров (альтиметров).

Радиоскаттерометры. Измерение статистических характеристик ветровых волн. Теоретические основы скаттерометрии. Удельная эффективная поверхность рассеяния моря в зависимости от характеристик ветрового волнения, частоты, поляризации и угла скольжения электромагнитной волны. Методика измерения дисперсии возвышений, высоты значительного волнения и уклонов поверхности, пространственного спектра волнения, скорости и направления приводного ветра. Определение балльности моря по доплеровским спектрам радиолокационных отражений. Возможности радиолокаторов с синтезированной апертурой. Регистрация волн зыби, поверхностных проявлений внутренних волн и нефтяных пленок. Механизмы проявления волн зыби, внутренних волн и нефтяных пленок в радиолокационных изображениях морской поверхности. Точности измерения радиолокационных контрастов.

4. Образовательные технологии

Основным видом образовательных технологий дисциплины «Океанология» является самостоятельная работа аспиранта: аспирантам даются задания по самостоятельной подготовке материалов по тематике занятий, которые впоследствии обсуждаются с научным руководителем аспиранта. При необходимости организуются групповые и индивидуальные консультации обучающихся с руководителем образовательной программы.

5. Учебно-методическое обеспечение самостоятельной работы аспирантов.

Используются виды самостоятельной работы аспиранта: в читальном зале библиотеки ИПФ РАН, в компьютерном классе с доступом к ресурсам Интернет и в домашних условиях. Порядок выполнения самостоятельной работы соответствует программе дисциплины и контролируется научным руководителем аспиранта. Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим рекомендованные учебники и учебно-методические пособия, доступные ресурсы в Интернет по тематике курса, а также конспекты и презентации лекций.

6. Критерии и процедуры оценивания результатов обучения по дисциплине. Описание шкал оценивания.

Промежуточная аттестация по дисциплине «Океанология» проводится в форме кандидатского экзамена по научной специальности 1.6.17. Океанология с оценкой по следующей шкале: «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Кандидатский экзамен сдается по совокупности всех освоенных за время обучения специальных дисциплин.

Критерии оценок:

Отлично	Высокий уровень подготовки с незначительными ошибками. Аспирант дает полный				
	и развернутый ответ на все заданные теоретические вопросы; точно отвечает на				
	дополнительные вопросы; приводит почти полные, аргументированное решение				
	сформулированной задачи с незначительными недочетами, способен успешно шить дополнительную задачу. Изложение решений и полученные ответы отли ются логической последовательностью, четкостью в выражении мыслей и обос				
	ванностью выводов, демонстрирующих знание общефизических и профессиональ-				
	ных дисциплин, умение применять на практике приобретенные навыки, владение				
	методиками решения задач.				
	Выполнение контрольных экзаменационных заданий на 90% и выше				
Хорошо	В целом хорошая подготовка с заметными ошибками или недочетами. Аспирант				
	дает полный ответ на все заданные теоретические вопросы билета с небольшими				
	неточностями, допускает ошибки при ответах на дополнительные вопросы; приво-				
	дит почти полное решение сформулированной задачи с некоторыми недочетами.				
	Изложение решений и полученные ответы отличаются логической последователь-				
	ностью, достаточной четкостью в выражении мыслей и не всегда полной обосно-				
	ванностью выводов, демонстрирующих, в целом, знание общефизических и про-				
	фессиональных дисциплин, умение применять на практике приобретенные навыки,				
	владение основными методиками решения задач.				
	Выполнение контрольных экзаменационных заданий от 70 до 90%.				

37			
Удовлетворительно	Минимально достаточный уровень подготовки. Аспирант показывает минимальный		
	уровень теоретических знаний, допускает ошибки при ответах на дополнительн		
	вопросы; приводит неполные, слабо аргументированное решение сформулирован-		
	ной задачи. Изложение решений и полученные ответы не отличаются стройной ло-		
	гической последовательностью, четкостью в выражении мыслей и обоснованно-		
	стью выводов, что говорит о не достаточно полном понимании общефизических и		
	профессиональных дисциплин, умении применять на практике лишь некоторые		
	приобретенные навыки, владении не всеми изученными методиками решения задач.		
	Выполнение контрольных экзаменационных заданий от 50 до 70%.		
Неудовлетворительно	Подготовка недостаточная и требует дополнительного изучения материала. Аспи-		
	рант дает ошибочные ответы, как на заданные теоретические вопросы, так и на на-		
	водящие и дополнительные вопросы экзаменатора; приводит решение сформулиро-		
	ванной задачи с грубыми недочетами, что говорит о недостатке знаний по общефи-		
	зическим и профессиональным дисциплинам, отсутствии умения применять на		
	практике приобретенные навыки, не владение методиками решения задач.		
	Выполнение контрольных экзаменационных заданий до 50%.		

Вопросы по программе кандидатского экзамена

- 1. Уравнения движения сплошной среды. (Эйлера, Лагранжа, Навье—Стокса, Рейнольдса).
- 2. Уравнение неразрывности, уравнение гидростатики.
- 3. Волны в океане: поверхностные, внутренние волны, волны Россби.
- 4. Силовые поля в океане, вызывающие течения. Понятие о баротропности и бароклинности океана.
- 5. Геострофические течения.
- 6. Экмановские пограничные слои.
- 7. Ветровая крупномасштабная циркуляция океана. Основные течения в океане (Гольфстрим, Куросио, экваториальное противотечение).
- 8. Водные массы и меридиональный перенос тепла и пресной составляющей в океанах. Климатическая изменчивость характеристик водных масс.
- 9. Ветровые волны: статистические и спектральные методы описания. Механизмы генерации ветровых волн и законы их развития.
- 10. Волны цунами, их возникновение, распространение, накат на берег. Районирование побережья по степени цунамиопасности.
- 11. Планетарные и топографические волны Россби.
- 12. Механизмы генерации и диссипации мелкомасштабных внутренних волн.
- 13. Пленки поверхностно активных веществ и их влияние на взволнованную морскую поверхность.
- 14. Уравнение Орра-Зоммерфельда и уравнение Рэлея. Теорема Рэлея об устойчивости плоскопараллельного потока идеальной жидкости.
- 15. Развитая турбулентность. Гипотезы Колмогорова о статистических свойствах мелкомасштабной турбулентности при больших числах Рейнольдса.
- 16. Инерционный интервал. Закон 2/3.
- 17. Уравнения Рейнольдса. Уравнение баланса турбулентной энергии. Полуэмпирические теории турбулентности.
- 18. Мутная среда и ее оптические характеристики. Оптические характеристики шероховатых поверхностей.
- 19. Лазерная диагностика океана: уравнение лидарного зондирования, определение оптических характеристик воды по сигналу обратного рассеяния, лидарный метод наблюдения внутренних волн, лазерная флуориметрия воды, лазерная батиметрия.
- 20. Отражение и преломление звука на границе вода-воздух и вода морское дно. Закон Снеллиуса. Формула Френеля. Полное внутреннее отражение.
- 21. Рассеяние акустических волн на случайных неоднородностях.
- 22. Акустическая томография и акустическая термометрия океана.
- 23. Метод малых возмущений. Приближение Кирхгофа.
- 24. Радиометрическая диагностика ветрового волнения.

25. Измерение статистических характеристик ветровых волн. Теоретические основы скаттерометрии.

7. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
 - 1) Океанология, Физика океана, Том 1-2 под ред. В.М. Каменковича и А.С. Монина. М., Наука, 1978 г. 3 экз.
 - 2) Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М. Наука, 1986. 7 экз.
 - 3) THE FORMATION OF ACOUSTICAL FIELDS IN OCEANIC WAVEGUIDES. Co-Editors Prof. V. I. Talanov Prof. V. A. Zverev.1995. [Электронный ресурс Виртуальная библиотека ИПФ РАН]. http://www.iapras.ru/biblio/img/af.pdf
 - 4) Методы гидрофизических исследований. *Материалы I Всесоюзной школы (Солнечно-горск, октябрь 1983г.)* [Электронный ресурс Виртуальная библиотека ИПФ РАН] http://www.iapras.ru/biblio/img/gi.pdf
 - 5) Методы гидрофизических исследований. Турбулетность и микроструктура. [Электронный ресурс Виртуальная библиотека ИПФ РАН] http://www.iapras.ru/biblio/new/metgis90.pdf
 - 6) Методы гидрофизических исследований. Волны и вихри. [Электронный ресурс Виртуальная библиотека ИПФ РАН] http://www.iapras.ru/biblio/new/metgis87.pdf
- б) дополнительная литература:
 - 1) Формирование акустических полей в океанических волноводах. Реконструкция неоднородностей. *Сборник научных трудов*. Ответственный редактор В. А. Зверев. [Электронный ресурс Виртуальная библиотека ИПФ РАН] http://www.iapras.ru/biblio/img/R.pdf
 - 2) THE FORMATION OF ACOUSTICAL FIELDS IN OCEANIC WAVEGUIDES. Volume 1. Editor V. A. Zverev .1998. [Электронный ресурс Виртуальная библиотека ИПФ PAH]. http://www.iapras.ru/biblio/new/formakf1.pdf
 - 3) THE FORMATION OF ACOUSTICAL FIELDS IN OCEANIC WAVEGUIDES. Volume 2. Editor V. A. Zverev .1998. [Электронный ресурс Виртуальная библиотека ИПФ PAH]. http://www.iapras.ru/biblio/new/formakf2.pdf
 - 4) В.В. Гончаров, В.Ю. Зайцев., В.М. Куртепов, А.Г. Нечаев, А.И. Хилько. «Акустическая томография океана» [Электронный ресурс Виртуальная библиотека ИПФ РАН] http://www.iapras.ru/biblio/img/ato.pdf
 - 5) Khil'ko Alexander I., Caruthers Jerald W. and Sidorovskaia Natalia A. Ocean Acoustic Tomography: A Review with Emphasis on the Russian Approach [Электронный ресурс Виртуальная библиотека ИПФ РАН] http://www.iapras.ru/biblio/new/actom.pdf

8. Материально-техническое обеспечение дисциплины

- Специальные помещения для проведения занятий: лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет";
- Лицензионное программное обеспечение (Windows, Microsoft Office);
- Обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются (при необходимости) электронными и (или) печатными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Авторы	 Ю.И. Троицкая
	 С.А. Ермаков

ПРОГРАММА

кандидатского экзамена по научной специальности

1.6.17. Океанология

по физико-математическим наукам

Часть 1. Динамика моря

1.1. Течения

Уравнения движения (Эйлера, Лагранжа, Навье—Стокса, Рейнольдса). Уравнение неразрывности, уравнение гидростатики. Силовые поля в океане, вызывающие течения. Понятие о баротропности и бароклинности океана. Геострофические течения. Экмановские пограничные слои. Ветровая крупномасштабная циркуляция океана. Основные течения в океане (Гольфстрим, Куросио, экваториальное противотечение). Динамика русловых потоков.

1.2. Водные массы и вертикальная структура океана

Основные закономерности формирования и изменчивости полей температуры, солености и плотности вод. Климат океана. Причины стратификации и вертикальная структура вод океана; закономерности ее формирования. Пространственно-временная изменчивость гидрофизических полей. Водная масса, ее основные характеристики. Трассеры водных масс. Классификация водных масс. Условия формирования и закономерности распространения основных водных масс океанов. Промежуточные, глубинные и придонные водные массы океанов. Водные массы окраинных и внутренних морей. Особенности структуры вод отдельных океанов. Межокеанский «конвейер». Водные массы и меридиональный перенос тепла и пресной составляющей в океанах. Климатическая изменчивость характеристик водных масс. Тонкая структура гидрофизических полей, механизмы ее генерации.

1.3. Ветровые волны

Основы гидродинамической теории поверхностных гравитационных и гравитационно-капиллярных волн. Дисперсия, дисперсионные уравнения, фазовая и групповая скорость волн. Короткие и длинные волны. Линейные и нелинейные волны. Энергия волн и ее поток. Ветровые волны: статистические и спектральные методы описания. Механизмы генерации ветровых волн и законы их развития. Методы расчета элементов и спектральных характеристик ветровых волн. Ветровые волны открытого океана и прибрежной зоны, их трансформация у берегов; ветровая зыбь. Основные механизмы генерации ветровых волн. Статистическое описание взволнованной поверхности. Развитое волнение. Автомодельные спектры и распределения вероятностей ветрового волнения. Спектральные методы расчета ветровых волн. Обрушение волн и насыщение спектра. Трансформация ветровых волн на мелководье и течениях. Ветровая рябь. Зыбь. Индуцированные течения в приповерхностном слое.

1.4. Длинные волны в океане

Длинные гравитационные волны. Уравнения мелкой воды. Длинные нерегулярные длиннопериодные волны — сейши, барические волны, штормовые нагоны. Топографический захват
волновой энергии (волны Кельвина, Пуанкаре и др.) и частотные свойства шельфа. Резонансные колебания в бухтах и гаванях (сейши, тягуны). Наводнения. Волны цунами, их возникновение, распространение, накат на берег. Районирование побережья по степени цунамиопасности. Приливные волны в океане; приливообразующие силы. Статическая и динамическая теории приливов и их современное развитие. Приливные течения. Приливы открытого океана, морей и прибрежной зоны. Приливные карты и их анализ.

1.5. Волны Россби и синоптические вихри в океане

Квазигеострофическое приближение. Приближение бета-плоскости. Баротропный радиус деформации Россби. Планетарные и топографические волны Россби. Волны в тропической

зоне. Экваториальные волны. Баротропная и бароклинная неустойчивость. Баротропные и бароклинные волны Россби. Метод контурной динамики.

1.6. Внутренние волны

Внутренние волны на границе двух сред. Внутренние волны в океане с непрерывной стратификацией. Элементы нелинейной теории внутренних волн. Взаимодействие внутренних волн с течениями в океане. Генерация внутреннего прилива при трансформации баротропного прилива на континентальном шельфе. Механизмы генерации и диссипации мелкомасштабных внутренних волн. Взаимодействие внутренних волн с ветровым волнением (кинематический, пленочный и каскадный механизмы).

1.7. Транспорт примесей и наносов

Основные уравнения для примеси. Диффузия примеси в стратифицированном океане. Дрейф льда. Пленки поверхностно - активных веществ и их влияние на взволнованную морскую поверхность. Размывы дна и эрозия берегов под действием волн и течений.

1.8. Теория турбулентности

Гидродинамическая неустойчивость. Неустойчивость тангенциального разрыва. Неустойчивость плавного плоскопараллельного потока жидкости. Уравнение Орра-Зоммерфельда и уравнение Рэлея. Теорема Рэлея об устойчивости плоскопараллельного потока идеальной жидкости. Развитая турбулентность. Гипотезы Колмогорова о статистических свойствах мелкомасштабной турбулентности при больших числах Рейнольдса. Инерционный интервал. Закон 2/3. Уравнения Рейнольдса. Уравнение баланса турбулентной энергии. Полуэмпирические теории турбулентности. Примеры турбулентных геофизических потоков (логарифмический пограничный слой, слой Экмана). Влияние плотностной стратификации на характеристики турбулентности.

Часть 2. Радиофизические методы исследования морей и внутренних водоемов ВВЕДЕНИЕ

Океан как объект дистанционного зондирования. Задачи дистанционного зондирования. Физические поля и физические эффекты, лежащие в основе методов дистанционного зондирования. Проблема интерпретации данных.

2.1. ОПТИКА МОРЯ.

а) Распространение света в мутной среде.

Фотометрические характеристики поля излучения. Мутная среда и ее оптические характеристики. Оптические характеристики шероховатых поверхностей. Уравнение переноса излучения (УПИ). Теорема оптической взаимности. Представление светового поля заданных источников через функцию Грина. Приближенные методы решения УПИ. Оптические свойства морской воды

б) Распространение света в воде от естественных иискусственных источников.

Солнечный свет в море. Ослабление облученности с ростом глубины. Спектральный коэффициент яркости морской поверхности, факторы, определяющие цвет моря. Ослабление мощности и уширение узкого светового пучка при прохождении через водный слой. Распределение яркости от точечного изотропного источника и его связь с распределением облученности в узком световом пучке. Распространение и рассеяние коротких световых импульсов в воде. Закон спада отраженного водой лазерного импульса.

в) Дистанционное оптическое зондирование океана.

Оптическая диагностика ветрового волнения. Определение содержания биологического вещества в воде по спектру отраженного морем солнечного света. Лазерная диагностика океана: уравнение лидарного зондирования, определение оптических характеристик воды по сигналу обратного рассеяния, лидарный метод наблюдения внутренних волн, лазерная флуори-

метрия воды, лазерная батиметрия. Подводное видение. Дальность визуальной видимости (теория Дантли — Прайзендорфера). Подводное телевидение. Уравнение переноса изображения. Уравнения для определения дальности действия и разрешающей способности электронных систем видения.

2.2. АКУСТИКА МОРЯ.

а) Звуковые волны в море.

Волновое уравнение. Плоские, сферические и цилиндрические волны. Отражение и преломление звука на границе вода-воздух и вода — морское дно. Закон Снеллиуса. Формула Френеля. Полное внутреннее отражение. Основные факторы, определяющие скорость звука в морях и океанах. Лучевое описание звукового поля в море. Рефракционные явления при распространении звука в море. Зоны конвергенции и зоны тени. Понятие об океаническом волноводе. Собственные волны в акустическом волноводе. Интерференция звуковых волн.

б) Статистические явления при распространении звука в море.

Рассеяние акустических волн на случайных неоднородностях. Флуктуации амплитуды и фазы. Объемные, поверхностные и донные неоднородности. Теория поверхностной, донной и объемной реверберации.

в) Методы генерации и формирования акустического поля в море, методы приема и обработки акустических сигналов.

Излучатели и излучающие антенны. Пьезокерамические, электромагнитные и электродинамические излучатели. Параметрическое излучение звука в море. Гидрофоны и приемные антенны. Акустические шумы в море, происхождение и спектральный состав. Спектральная и корреляционная обработка сигналов в присутствии шумов. Акустическая томография и акустическая термометрия океана. Гидролокация.Пассивная и активная гидролокация. Уравнение дальности гидролокации. Понятие о методах подводной акустической связи, эхолокации рыбных косяков, съемки рельефа дна и определения глубины места.

2.3. РАДИОЛОКАЦИОННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОКЕАНА И КОСМИЧЕСКАЯ ОКЕАНОЛОГИЯ.

а) Рассеяние радиоволн морской поверхностью

Метод малых возмущений. Приближение Кирхгофа. Двухмасштабная модель поверхности.

б) Радиометрические методы диагностики океана.

Связь между радиационной и термодинамической температурой поверхности океана. Влияние атмосферы, поверхностно-активных пленок, ветровых волн и приповерхностного инверсного слоя на работу радиометров. Многоканальная радиометрия. Точность радиометрических измерений. Радиометрическая диагностика ветрового волнения. Критические резонансные явления в собственном излучении шероховатой поверхности. Методика определения характеристик гравитационно-капиллярных волн. Дистанционное обнаружение нефтяных пленок.

в) Исследование океана методами активной радиолокации.

Регистрация изменчивости уровенной поверхности океана (морского геоида). Проявление течений и синоптических процессов в сглаженном рельефе морской поверхности. Возможности спутниковых радиовысотомеров (альтиметров).

Радиоскаттерометры. Измерение статистических характеристик ветровых волн. Теоретические основы скаттерометрии. Удельная эффективная поверхность рассеяния моря в зависимости от характеристик ветрового волнения, частоты, поляризации и угла скольжения электромагнитной волны. Методика измерения дисперсии возвышений, высоты значительного волнения и уклонов поверхности, пространственного спектра волнения, скорости и направления приводного ветра. Определение балльности моря по доплеровским спектрам радиолокационных отражений. Возможности радиолокаторов с синтезированной апертурой. Регистрация волн зыби, поверхностных проявлений внутренних волн и нефтяных пленок. Меха-

низмы проявления волн зыби, внутренних волн и нефтяных пленок в радиолокационных изображениях морской поверхности. Точности измерения радиолокационных контрастов.

Литература

- 1. Океанология, Физика океана, Том 1-2 под ред. В.М. Каменковича и А.С. Монина. М., Наука, 1978 г.
- 2. Филлипс О.М. Динамика верхнего слоя океана, Л. Гидрометеоиздат, 1980 г.
- 3. Красицкий В.П., Монин А.С. Явления на поверхности океана Л. Гидрометеоиздат, 1985г.
- 4. Миропольский Ю.З. Динамика внутренних волн в океане. Л. Гидрометеоиздат, 1981 г.
- 5. Педлоски Дж. Геофизическая гидродинамика. Т.1-2. М. Мир, 1984.
- 6. Ле Блон П., Майсек Л. Волны в океане. Т.1-2. М. Мир, 1981.
- 7. Монин А.С., Озмидов Р.З. Океанская турбулентность, Л. Гидрометеоиздат, 1981 г
- 8. Озмидов Р.З. Диффузия примесей в океане, Л. Гидрометеоиздат, 1981 г
- 9. Пелиновский Е.Н. Нелинейная динамика волн цунами. Горький, ИПФ АН СССР, 1982
- 10. Монин А.С. Теоретические основы геофизической гидродинамики. Л.: Гидрометеоиздат, 1988
- 11. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М. Наука, 1986.
- 12. Оптика океана / Под. Ред. А.С. Монина. М.: Наука, 1983.
- 13. Том 1. Физическая оптика океана. 371 с. Том 2. Прикладная оптика океана. 240 с.
- 14. Ерлов Н.Г. Оптика моря / Пер. с англ. Л.: Гидрометеоиздат, 1980. 248 с.
- 15. Иванов А. Введение в океанографию / Пер. с франц. М.: Мир, 1978. 574 с.
- 16. Иванов А.П. Физические основы гидрооптики. Минск: Наука и техника, 1975. 503 с.
- 17. А. Исимару. Распространение и рассеяние волн в случайно неоднородных. М.: Мир,1981.
- 18. Л.А.Апресян, Ю.А.Кравцов. Теория переноса излучения. М.: Наука, 1983.
- 19. Э.П.Зеге, А.П.Иванов, И.Л.Кацев. Перенос изображения в рассеивающих средах. Минск: Наука и техника,1985.
- 20. Л.С. Долин, И.М. Левин. Справочник по теории подводного видения. Л.: Гидрометео-издат, 1991. 230 с.
- 21. Р. Межерис. Лазерное дистанционное зондирование. М. Мир, 1987.
- 22. А.Ф.Бункин, Д.В.Власов, Д.М.Миркамилов. Физические основы лазерного аэрозондирования поверхности земли. Ташкент, Издат. Фан. Узб. ССР, 1987.
- 23. Исакович М.А. Общая акустика. М. Наука, 1973.
- 24. Урик Р.Дж. Основы гидроакустики. Перевод с англ. Под ред. Е.Л. Шендерова. Л. Судостроение. 1978.
- 25. Клей К., Медвин Г. Акустическая Океанология. М. Мир. 1980.
- 26. Акустика океана. Под ред. Дж. Де Санто. М. Мир. 1982.
- 27. Распространение звука во флуктуирующем океане. Под ред. С. Флатте. М. Мир. 1982.
- 28. Басс Ф.Г., Фукс И.М. Рассеяние волн на статистически неровной поверхности. М. Наука. 1972.
- 29. Зубкович С.Г. Статистические характеристики радиосигналов, отраженных от морской поверхности. М. Сов. Радио. 1968.
- 30. Радиолокационные методы исследования Земли. Сб. под ред. Ю.А. Мельника. М. Сов. Радио. 1980.
- 31. Дистанционные методы исследования океана. Сб. под ред. Д.М. Браво-Животовского, Л.С. Долина. Горький. ИПФ АН СССР. 1987.
- 32. Приповерхностный слой океана: физические процессы и дистанционное зондирование. Сб. под ред. Е.Н. Пелиновского и В.И. Таланова. Нижний Новгород. ИПФ РАН. 1999.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт прикладной физики Российской академии наук» (ИПФ РАН)

ПРОТОКОЛ

заседания экзаменационной ко	омиссии от «	»г.
Структурное подразделение:		
СОСТАВ КОМИССИИ:	Председатель:	
утвержден приказом	Зам.председател	
№ от г.	Члены комиссии	
СЛУШАЛИ:		
Прием кандидатского экзамен	а по специальной	дисциплине.
Научная специальность	11/	ифр, наименование научной специальности
от		
	(фамилия, ил	я, отчество)
На экзамене были заданы след	цующие вопросы:	
		_
ПОСТАНОВИЛИ: считать, чт	O	
выдержал экзамен с оценкой		
Председатель экзаменационно	ой комиссии:	
Заместитель председателя:	_	
Члены экзаменационной коми	— Іссии:	
TOTAL SECULIARIES INCHINE		
	_	
	_	