lymero

Артеменко Иван Игоревич

ИОНИЗАЦИОННАЯ ИНИЦИАЦИЯ КАСКАДОВ, СПИНОВЫЕ И РАДИАЦИОННЫЕ ЭФФЕКТЫ В СИЛЬНЫХ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ПОЛЯХ

1.3.9 – физика плазмы

А в т о р е ф е р а т диссертации на соискание учёной степени кандидата физико-математических наук

Нижний Новгород – 2024

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук» (ИПФ РАН, г. Нижний Новгород)

Научный руководитель: Неруш Евгений Николаевич, кандидат фи-

зико-математических наук, старший научный сотрудник, ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук»

(г. Нижний Новгород).

Официальные оппоненты: Брантов Андрей Владимирович, доктор

физико-математических наук, ведущий научный сотрудник отделения квантовой радиофизики, ФГБУН Физический институт им. П. Н. Лебедева Российской академии

наук (г. Москва);

Пугачева Дарья Валерьевна, кандидат физико-математических наук, ФГБУН Объединённый институт высоких температур Российской академии наук

(г. Москва).

Ведущая организация: ФГАОУ ВО Национальный исследова-

тельский ядерный университет «МИФИ»

(г. Москва).

Защита состоится «20» мая 2024 г. в 15:00 на заседании диссертационного совета 24.1.238.01 при ИПФ РАН, 603950, г. Нижний Новгород, ул. Ульянова, 46.

С диссертацией можно ознакомиться в научной библиотеке и на сайте ipfran.ru ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук».

Автореферат разослан 10 апреля 2024 г.

Учёный секретарь диссертационного совета доктор физико-математических наук

Э. Б. Абубакиров

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации

Ионизация полем, спиновые и радиационные эффекты играют важную роль во взаимодействии лазерного излучения с веществом. Понимание динамики спина заряженных частиц в условиях воздействия сильных лазерных полей может оказаться полезным в ситуациях, где необходимо создать пучки частиц с высокой степенью поляризации или же ускорить уже поляризованный электронный пучок с помощью лазерного поля, не теряя при этом поляризационных свойств. Используя лазеры на свободных электронах можно получать фотоны МэВ-ных энергий за счет нелинейного комптоновского рассеяния на установках HIpS [1] и NewSUBARU [2]. Несмотря на то, что теория рассеяния света на релятивистских электронах хорошо исследована, существует не так много экспериментов в этой области и, многие теоретические модели все еще требуют экспериментальной проверки. Недавнее исследование силы реакции излучения в кристаллах показало, что есть разница между экспериментальными данными и формулами для квантового синхротронного излучения [3]. Это наблюдение спровоцировало новое обсуждение теоретических моделей [4, 5]. Строгий анализ взаимодействия лазерного излучения с заряженными частицами очень сложен. В общем случае найти какие-либо радиационные характеристики можно либо в рамках какого-то приближения, либо для узкого круга параметров.

Одним из явлений, возникающих при взаимодействии заряженных частиц с лазерными импульсами сверхвысоких интенсивностей (10²⁴ Вт/см² и выше), является развитие квантово-электродинамических (КЭД) каскадов. Каскад представляет собой цепочку из двух процессов: излучения релятивистским лептоном фотона с большой энергией (жесткого фотона) и распада фотона на электрон-позитронную пару (хотя возможен распад и на другие лептоны, но в данной работе рассматриваются только электрон-позитронные пары). Различают два типа КЭД каскадов – каскады S-типа, возникающие в атмосфере планеты при пролете через нее высокоэнергичной частицы, и каскады А-типа или самоподдерживающиеся каскады, которые возможны в сильных электромагнитных полях. К настоящему моменту самоподдерживающиеся КЭД-каскады в лабораторных условиях не наблюдались. Это связано, в основном, с недостаточно высокой интенсивностью лазерных полей, доступных на данный момент. Тем не менее можно ожидать, что лазерные установки ближайшего будущего [6-13] смогут достичь необходимых значений интенсивности. В частности, относительно недавно была достигнута интенсивность в 10^{23} Вт/см 2 [14]. Также уже есть установки, которые могут работать на уровне мощности 10 ПВт [6, 7, 15]. Характеризовать взаимодействие столь мощных полей с веществом удобно используя Лоренц инвариант-

ный параметр $\chi = \gamma B/B_{cr}$, где $B_{cr} \sim 4.4 \cdot 10^9$ T есть критическое магнитное поле, а γ есть лоренц-фактор частицы.

Было предложено несколько конфигураций лазерного поля для минимизации мощности лазера, необходимой для создания самоподдерживающегося КЭД-каскада. Одна из самых простых конфигураций возникает в результате интерференции двух встречных лазерных импульсов. В работах [16-19] исследовалось влияние поляризации лазерного излучения на формирование самоподдерживающегося каскада. Предполагается, что лазерно-дипольная волна может обеспечить развитие каскада КЭД при мощности лазера ниже 10 ПВт [20]. Структура поля, похожая на дипольную волну, может быть образована с использованием 12 лазерных импульсов [21]. Другая конфигурация лазерного поля, обеспечивающая формирование КЭД-каскада на уровне мощности ниже 10 ПВт, может быть построена путем когерентного суммирования нескольких лазерных импульсов с эллиптической поляризацией [22]. Стоит отметить, что размер фокусного пятна имеет решающее значение для КЭД-каскада [23]. С одной стороны, за счет уменьшения размера фокального пятна при заданной мощности можно увеличить интенсивность лазерного поля, тем самым увеличивая вероятность процессов КЭД. С другой стороны, если размер пятна слишком мал, каскадные частицы могут быстро покинуть область сильного поля, подавляя его развитие.

В пределе высокой интенсивности каскад может быть инициирован спонтанным созданием электрон-позитронных пар из вакуума [16]. Однако, при использовании относительно низких интенсивностей необходимы затравочные частицы для инициации каскада. В качестве таких частиц могут выступать как электроны [19, 22, 24], так и фотоны высокой энергии [25]. При попытках создать каскад за счет столкновения лазерного импульса с пучком электронов возникает следующая проблема. Электроны могут быть вытолкнуты из области каскада пондеромоторным потенциалом лазерного поля до попадания в область высокой напряженности поля. Только небольшая часть затравочных электронов может служить катализатором для запуска каскада [19]. Можно использовать ультрарелятивистские электроны, поскольку пондеромоторный потенциал подавляется из-за релятивистской массы [26], однако в этом случае требуется использование ускорителей электронов. Кроме того, необходимо сфокусировать пучок электронов в области взаимодействия и синхронизировать его с лазерными импульсами, что создает дополнительные трудности. Аналогичные трудности (высокая стоимость источников яркого гамма-излучения, фокусировка и синхронизация гамма-луча) возникают при попытках использовать в качестве затравочных частиц высокоэнергетические фотоны. В качестве затравочных частиц можно использовать электроны с нижних уровней тяжелых атомов. В работе [23] было продемонстрировано, что инициация каскада в поле двух встречных лазерных импульсов упрощается за счет использования элементов с высоким порядковым номером, однако авторы использовали упрощенную модель для описания ионизации атома и рассматривали только водород и кислород в качестве газовой мишени. Модель не учитывала вероятностный характер ионизации, зависимость вероятности ионизации от параметров электронной оболочки, последовательную и множественную ионизацию атомов с высоким порядковым номером. В данной работе разработана более точная и физически корректная модель, а также исследовано развитие КЭД каскада во вращающемся электрическом поле.

Квантовая электродинамика предсказывает нелинейные диэлектрические свойства вакуума в сильных электромагнитных полях, создаваемые виртуальными электрон-позитронными парами. При интенсивностях 10^{23} – 10^{24} BT/cm^{-2} , показатель преломления вакуума n можно оценить как $\delta n = n - 1 \sim$ 10^{-10} [27] для фотонов с энергией ~ 1 ГэВ [28]. Уже для электронов с энергией 30 ГэВ можно формально выполнить черенковское условие. Этим объясняется недавний интерес к черенковскому излучению в поляризованном вакууме [29-31]. Однако результаты этих статей следует пересмотреть из-за используемого там упрощенного подхода. В работе [32] использовалось более общее описание процесса излучения. В этом случае «черенковский» и синхротронный режим излучения являются частными случаями одного общего процесса – синергического синхротрон-черенковского излучения (термин введен в работе [32]). В данной диссертации используется квазиклассический подход к описанию синхротрон-черенковского излучения, а также обсуждается справедливость полученных результатов в свете гипотезы Ритуса – Нарожного [33-37], накладывающей ограничение на применимость теории возмущений КЭД при сверхсильных полях и высоких энергиях.

В последнее время также растет интерес к исследованию поляризационных эффектов в лазерно-плазменном взаимодействии [38, 39]. Выражения для скоростей излучения были также получены в работах [40, 41]. Уже исследован ряд явлений, в которых спиновые эффекты играют существенную роль. Рассмотрена спиновая динамика в магнитном узле двух встречных лазерных импульсов [42]. Передача спиральности от лазерных фотонов электронному пучку исследована численно в работе [43], а в работах [44, 45] образование поляризованных лептонов в процессе Брейта – Уилера. Появился ряд работ, посвященных эволюции поляризации электронного пучка в плазменных ускорителях [46-48]. Была разработана модель для исследования спиновой динамики в лазерно-плазменных ускорителях и рассчитаны оптимальные параметры для достижения минимальной деполяризации электронных пучков при ускорении [48]. Предложен метод фильтрации для генерации электронных пучков с высокой степенью поляризации [49]. Ускорение пучка частиц с сохранением высокой степени поляризации обсуждается в работе [50]. Исследована роль спин-зависимой силы реакции излучения при взаимодействии лазерного импульса с электронным пучком [51]. Показано, что учет этой силы приводит к асимметричному отклонению электронов с различной ориентацией спина, и это отклонение больше, чем отклонение, вызванное силой, действующей на магнитный момент электрона.

Спиновые свойства лептонов широко используются в экспериментальных исследованиях для измерения параметров атомов и молекул [52], изучения радиационных свойств и ядерных структур [53, 54] и исследования физики за пределами Стандартной модели на линейных коллайдерах [55]. Пучки поляризованных лептонов могут быть получены с помощью эффекта Соколова — Тернова [56]. Однако сгустки поляризованных электронов, полученные с помощью этого метода, имеют низкий ток, а для создания поляризации требуется длительное время.

В работе [57] была предложена модель эволюции вектора спина лептона. Автор выводит уравнения, описывающие прецессию спина, возникающую из-за наличия внешних электромагнитных полей с учетом радиационных эффектов. Решение этих уравнений хорошо согласуется с предсказаниями, основанными на эффекте Соколова — Тернова. Однако в модели используются два допущения: во-первых, рассматривается классический предел (χ <<1), вовторых, предположение, что χ остается постоянным в процессе спиновой эволюции, что эквивалентно постоянной энергии, если частица движется в постоянном магнитном поле. В работе [58] были выведены те же уравнения, но без предположения, что (χ <<1). В обоих случаях коэффициенты в уравнениях зависят от параметра χ , однако в работах [57, 58] этот параметр считался постоянным. Предположение о том, что χ остается постоянным, очень специфично и не соответствует действительности в большинстве реальных случаев, особенно когда рассматриваются сильные лазерные поля.

Цели и задачи диссертационной работы:

В рамках исследования были поставлены следующие цели:

- 1. Найти величину магнитного поля и время взаимодействия электрона с таким полем, при которых спектры электронов совпадают со спектрами электронов, взаимодействующих с лазерным полем в приближении Фоккера Планка
- 2. Исследовать излучение электрона, движущегося в сильном магнитном поле с учетом вакуумного показателя преломления. Проанализировать возможность наблюдения в экспериментах влияния вещественной части показателя преломления поляризованного вакуума на синхротронный спектр электрона. Продемонстрировать перспективность использования мюонов для исследования влияния действительной части показателя преломления поляризованного вакуума на излучение.
- 3. Разработать численную схему для учета полевой ионизации атомов. Исследовать преимущества использования тяжелых инертных газов в качестве затравки для развития каскадов.
- 4. Вычислить скорость роста КЭД-каскада с учетом квантовых поправок к силе радиационного трения.
- 5. Исследовать применимость модели непрерывных радиационных потерь для квазиклассической и классической областей в задаче о взаимодейст-

вии электрона с постоянным однородным магнитным полем с учетом спиновых эффектов.

6. Разработать численную модель для вычисления спиновой динамики лептонов в электромагнитных полях с учетом переворота спина из-за излучения. Получить выражения для эволюции проекции спина вдоль магнитного поля в случае, когда изменением энергии электрона пренебречь нельзя.

Научная и практическая значимость

Полученное соотношение между магнитным и лазерным полями позволяет получать спектры электронов в задаче о взаимодействии электронного пучка с лазером заменой лазерного поля на постоянное магнитное поле. Проведенное моделирование формирования КЭД-каскада с использованием в качестве мишени различных сортов идеальных газов может служить ориентиром для будущих экспериментов по столкновению лазерных импульсов с газовыми мишенями и наблюдению КЭД-каскадов. Найденное выражение для скорости роста КЭД-каскада может использоваться для оценок и планирования будущих экспериментов по наблюдению КЭД-каскадов.

Научная новизна работы

- 1. Исследовано излучение ультрарелятивистского электрона в приближении Фоккера Планка, когда число излученных фотонов велико, а энергия каждого фотона много меньше энергии электрона, который его излучает. Найдена величина магнитного поля и время взаимодействия электрона с таким полем, при которых спектры электронов совпадают со спектрами электронов, взаимодействующих с лазерным полем.
- 2. Было продемонстрировано, что влияние действительной части показателя преломления поляризованного вакуума на спектр излучения электрона, в области параметров, где справедливо использование теории возмущений, чрезвычайно мало.
- 3. Было продемонстрировано, что использование мюонов является перспективным для исследования влияния вещественной части показателя преломления поляризованного вакуума.
- 4. Построена физически более корректная, чем имеющиеся ранее, численная модель для описания полевой ионизации. Результаты численного моделирования с использованием данной модели подтверждают предположение о том, что более тяжелые газы лучше подходят в качестве затравки для инициации КЭД-каскада.
- 5. Исследована применимость модели непрерывных радиационных потерь в задаче о движении электрона в постоянном, однородном магнитном поле с учетом спиновых эффектов.
- 6. Получено выражение для эволюции спина в постоянном магнитном поле в режиме, когда пренебрегать изменением энергии электрона нельзя.

Основные положения, выносимые на защиту

- 1. В приближении Фоккера Планка спектры электронов, взаимодействующих с лазерным полем, могут быть получены заменой лазерного поля на некоторое постоянное магнитное поле, действующее в течении определенного времени взаимодействия. Полученное соответствие между магнитным и лазерным полями и между длительностью лазерного поля и длительностью взаимодействия с постоянным магнитным полем справедливо за пределами применимости приближения Фоккера Планка.
- 2. Изменения в спектре фотонов, излучаемых электроном, движущемся в постоянном магнитном поле, за счет действительной части вакуумного показателя преломления, индуцированного этим полем, становятся существенными в области, где теория возмущений несправедлива. Использование мюонов более перспективно для экспериментального наблюдения влияния действительной части показателя преломления вакуума на радиационные спектры.
- 3. Тяжелые инертные газы перспективнее для использования в качестве затравки для развития КЭД-каскада. Это объясняется высоким потенциалом ионизации нижних оболочек, из-за которого электроны с этих оболочек попадают в результате ионизации сразу в область сильного поля.
- 4. Модель непрерывных радиационных потерь (НРП) с учетом квантовых поправок применима на временах, существенно превышающих характерное время диссипации энергии для квазиклассического режима. В сильно квантовом режиме, как показывает моделирование для постоянного магнитного поля, модель НРП дает качественное описание динамики системы.

Апробация результатов

По теме диссертации опубликовано 12 работ, в том числе 6 статей [A1-A6] в рецензируемых изданиях, индексируемых в базе Web of Science, и 6 работ [A7-A12] в трудах конференций.

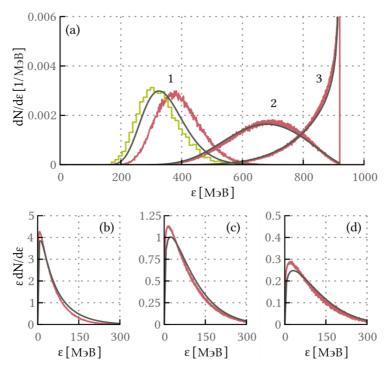
Публикации

По теме диссертации опубликованы 6 статей [A1–A6] в рецензируемых журналах.

Личный вклад автора в проведенные исследования

Все результаты, включенные в диссертационную работу, получены автором или при его непосредственном участии. Автором разработаны и протестированы пакеты программ для исследования спиновой динамики; разработан блок программы, учитывающий полевую ионизацию, для пакета QUILL. Автором получены выражения для магнитного поля и времени взаимодействия, соотношения для синхротрон-черенковского излучения для электронов и для мюонов. Для скорости роста каскада во вращающемся поле автором проведены численные расчеты и выполнен их анализ и интерпретация.

Структура и объем диссертации


Диссертация состоит из введения, трех глав, заключения, списка цитируемой литературы и списка публикаций по диссертации. Общий объем диссертации составляет 143 страницы, включая 26 рисунков, 2 таблицы, список литературы из 166 наименований на 17 страницах, список публикаций по диссертации из 12 наименований на 2 страницах.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во **введении** описывается актуальность темы исследования, текущий прогресс экспериментов и теории в исследуемой области, вводятся ключевые для всей работы квантовые параметры для электрона χ и для фотона к, производится постановка целей, выдвигаются положения на защиту, описывается вклад автора, список публикаций и результаты.

Первая глава состоит из двух частей. В первой части рассматривается задача о взаимодействии лазерного импульса с летящим навстречу пучком электронов и взаимодействие такого же пучка электронов с магнитным полем в течении некоторого времени. Сначала демонстрируется возможность замены лазерного поля на постоянное магнитное поле в уравнении Больцмана. Рассматривается одномерное уравнение Больцмана и приводится его решение в общем виде, а также обсуждается применимость приближения Фоккера – Планка. Из общего решения видно, что при рассматриваемом приближении вероятность излучения, которая в случае лазерного поля является функцией времени, можно заменить на некоторую постоянную величину. Используя центральную предельную теорему, получены формулы для связи между магнитным полем, временем взаимодействия и характеристиками лазерного поля в приближении Фоккера - Планка. Раздел 2.2.3 посвящен обсуждению работы кода Scintillans, который решает одномерное уравнение Больцмана в постоянном магнитном поле. Приводится численное представления для функции распределения и алгоритм решения уравнения Больцмана. В разделе 2.2.4 выполнено моделирование РІС-кодом задачи о прохождении пучка электронов через лазерное поле, а также, кодом Scintillans, задачи о взаимодействии пучка электронов с постоянным магнитным полем, величина которого получена из формул, выведенных в разделе 2.2.3. Как видно из рис. 1, приближение Фоккера – Планка уже не работает для кривых 2 и 3, тем не менее, при использовании формулы для магнитного поля и времени взаимодействия, как показывает численное моделирование, энергетические распределения электронов совпадают с хорошей точностью для двух разных задач.

Подраздел **раздела 2.2.4** посвящен обсуждению результатов первой части главы.

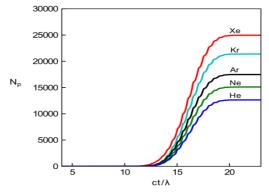


Рис. 1. Спектры частицы, получаемые в результате столкновении лазерного импульса с электронным пучком для различных длительностей импульса, вычисленные в РІСмоделировании (красные (серые) линии) и аналогичные спектры, полученные из уравнений Больцмана в ПГПП (черные кривые). Магнитное поле и время взаимодействия с полем вычисляются согласно уравнениям, полученным в **разделе 2.2.2**, где $\chi=0.1$ для ПГПП. Линии I, Z и Z изображают спектры электронов, а графики Z0, Z1 изображают энергетические спектры фотонов для лазерных импульсов с длительностью Z20, 68 и 17 фс соответственно. Зеленая ступенчатая кривая Z1 показывает результат работы РІС-кода для лазерного импульса без дифракции.

Вторая часть **первой главы** посвящена показателю преломления в вакууме. В **разделе 2.3.1** выводятся выражения для излученной энергии в интегральном виде. Подчеркивается важность синхронизма между волной и частищей для процесса излучения, вводятся характерные времена выхода частицы из синхронизма за счет кривизны траектории (поперечное время) и за счет разности фазовой скорости волны и скорости частицы (продольное время). **Раздел 2.3.2** посвящен квазиклассическому подходу к учету показателя преломления. Обсуждаются приближения, в которых формулы справедливы, приводятся выражения для квантовой и классической мощностей излучения с учетом показателя преломления. Обсуждается, почему условие для модифи-

кации синхротронного спектра более строгое, чем кажется из простых оценок. А именно, не достаточно просто выполнить условие черенковского синхронизма, также требуется сделать "продольное" время намного меньше "поперечного" времени за счет показателя преломления. В разделе 2.3.3 приводится понятие времени (длины) формирования излучения, и выводится формула для длины формирования "синхротрон-черенковского излучения" для разных режимов. Раздел 2.3.4 посвящен обсуждению возможных экспериментов по наблюдению показателя преломления в вакууме. Получено выражение для длины формирования синхротрон-черенковского излучения для разных соотношений продольного и поперечного времени. Приводится аналитическое обоснование того, почему для электронов наблюдение показателя преломления невозможно. Также приводятся оценки для мюонов и показано, что мюоны являются перспективными для исследования влияния показателя преломления на синхротронные спектры. Это объясняется тем, что мюоны более тяжелые, кривизна их траектории меньше, и выполнить условие на малость продольного времени проще. Для мюонов поляризация вакуума приводит к усилению максимума спектра излучения на 10% уже при $\chi \approx 30$. Основные результаты главы опубликованы в работах [А3, А6].

Вторая глава также состоит из двух частей. В первой части рассматривается ионизационная инициация КЭД-каскадов в результате столкновения двух лазерных импульсов, распространяющихся в области, заполненной инертным газом. Во второй части выводится выражения для скорости роста каскада во вращающемся электрическом поле. В разделе 3.2.1 представлена феноменологическая модель, описывающая два режима полевой ионизации, слабого и сильного поля. Режим слабого поля называют туннельной ионизацией, в этом случае внешнее поле вместе с потенциалом атома формируют барьер, под которым электрон может туннелировать. Этот режим хорошо исследован аналитически и есть выражение [61-63] для вероятности ионизации электрона с некоторого уровня водородоподобного атома. Случай сильного поля называется надбарьерной полевой ионизацией и реализуется, когда внешнее поле слишком велико и максимум потенциального барьера оказывается ниже, чем уровень, на котором находится рассматриваемый электрон. Теоретический анализ в этом случае очень сложен и в диссертации приводится феноменологический вывод выражения для вероятности надбарьерной ионизации в единицу времени. Впоследствии это выражение было проверено численным моделированием уравнения Шредингера [64]. Полная феноменологическая формула представляет собой кусочно-заданную функцию. Раздел 3.2.2 посвящен численному моделированию. Рассматриваются несколько подходов к описанию многократной ионизации, приводятся численные схемы для моделирования ионизации в РІС-коде. Рассматривается лобовое столкновение двух лазерных импульсов в области, заполненной газом. В качестве газов выбираются различные сорта благородных газов. Плотность газовой мишени подбиралась для каждого сорта газа таким образом, что при полной ионизации, количество электронов было одинаковое во всех случаях. Рисунок 2 демонстрирует результат моделирования описанной системы. Более тяжелые газы дают больший выход электрон-позитронных пар, подтверждая гипотезу о том, что электроны с нижних оболочек могут служить в качестве достаточно эффективной затравки для формирования каскада.

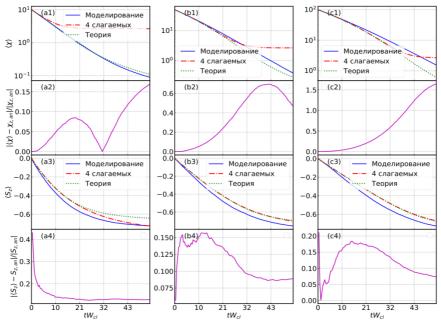


Рис. 2. Число электрон-позитронных пар как функция времени для случая газовой мишени с различными сортами газов He, Ne, Ar, Kr, Xe.

Раздел 3.2.3 представляет собой заключение, где обсуждаются результаты, а также аргументируются принятые в задаче приближения, такие как пренебрежение в моделировании процессами фотоионизации, ударной ионизации и тормозного излучения. Вторая часть начинается с раздела 3.3.1, где приводятся система уравнений Больцмана в общем виде для электронов, позитронов и фотонов во вращающемся электрическом поле. Такое поле формируется при столкновении двух циркулярно-поляризованных импульсов там, где магнитное поле равно нулю. Для решения этой системы делается ряд предположений, описанных в разделе 3.3.2. Во-первых, предполагается, что динамика лептонов описывается силой реакции излучения в форме Ландау – Лифшица с учетом КЭД поправок [65-67]. Предполагается, что временная зависимость в функции распределения частиц имеет вид $f_{e,p,ph} \sim \exp(\Gamma t)$, где Γ есть инкремент роста каскада. Также предполагается, что плотности электронов и позитронов одинаковые и движение лептонов подавлено в направлении, перпендикулярном плоскости вращения поля. Исходя и сделанных предположений в разделе 3.3.3 выводится выражение для Γ в интегральном виде. Делая еще несколько приближений, а именно, рассматривая случай малых параметров к и высоких энергий лептонов можно проинтегрировать выражения для Γ , используя метод перевала. В разделе 3.3.4 полученное выражения для скорости роста каскада сравнивается с РІС-моделированием для различных величин напряженности электрического поля и обсуждаются полученные результаты. Результаты, представленные в данной главе, опубликованы в работах [А2, А4, А5].

В третьей главе обсуждается модель НРП и ее применимость, рассматривается динамика электрона, движущегося в постоянном магнитном поле, с учетом радиационных эффектов и спиновых степеней свободы.

Раздел 4.1 посвящен формальному определению модели непрерывных радиационных потерь (НПР), выводятся выражения для средних энергий фотонов и электронов для случаев излучения одного, двух и N фотонов. Выводится условие применимости модели для квазиклассического случая χ <1, и рассматривается случай сильно квантового режима χ >>1. Несмотря на то что модель формально не применима в сильно квантовой области, результаты моделирования на рис. 3 показывают, что даже в режиме, когда χ >>1, НПР модель хорошо предсказывает поведение системы.

Рис. 3. На графиках сплошные синие линии a1, a3, b1, b3, c1, c3 показывают результаты численного моделирования, пунктирные зеленые линии показывают точное решение уравнений, полученных в **разделе 4.5**, а случай разложения правой части уравнения диссипации энергии показан красной штрихпунктирной линией. Для всех расчетов напряженность магнитного поля принималась равной B/B_{cr} =0.511 10^{-4} с исходным χ_0 равным 10 для (a1-a4), 50 для (b1-b4) и 100 за (c1-c4). Во всех случаях начальный средний спин равен нулю. Графики a2, a4, b2, b4, c2, c4 (сплошными фиолетовыми линиями) изображают разницу между численными результатами и решением уравнений, полученных в **разделе 4.5**.

В разделе 4.2 подробно описывается спиновая динамика с учетом радиационных потерь. Обсуждается уравнение Томаса – Баргмана – Мишеля –

Телегди (Т-БМТ) [68, 69], описывающее прецессию спина, радиационная и нерадиационная поляризация [70], а также приводятся выражения для конечного вектора спина в обоих случаях. Раздел 4.3 посвящен применению модели НРП к задаче о движении пучка электронов в постоянном магнитном поле с учетом радиационных и спиновых эффектов. Выводятся выражения для эволюции параметров электрона γ и среднего значения вектора спина (S₂) вдоль магнитного поля. Демонстрируется, как в случае, когда изменением энергии можно пренебречь из выведенных формул получается эффект Соколова – Тернова [56]. В разделе 4.4 описывается разработанный алгоритм для моделирования задач о взаимодействии электронов с электромагнитным полем с учетом радиационных и спиновых эффектов. Далее численно решается задача о движении неполяризованного пучка электронов в постоянном магнитном поле, и результаты сравниваются с аналитическими выражениями, полученными в разделе 4.3. Раздел 4.5 посвящен сильно квантовому режиму. В данном разделе, аналогично тому, как это сделано в работе [58], выводятся интегродифференциальные уравнения, аналогичные тем, что получены в разделе 4.3, но уже применимые для любого значения параметра у. Сравнение результатов моделирования с численным решением уравнений, полученных в этом разделе (см. рис. 3) является свидетельством того, что модель НРП применима даже в области, где параметр у много больше единицы. Раздел 4.6 представляет собой заключение, где обсуждаются результаты и перспективы дальнейшего исследования. Результаты данной главы опубликованы в работе [А1].

В Заключении приведены основные результаты диссертации.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

- 1. Найдено такое магнитное поле, при взаимодействии электронов с которым, получаемое распределение частиц по энергиям совпадает со случаем взаимодействия аналогичных электронов с заданным лазерным полем. Такая замена лазерного поля на постоянное магнитное во многих задачах может существенно упростить теоретический и численный анализ.
- 2. Показано, что влияние действительной части показателя преломления поляризованного вакуума на спектр излучения электрона в магнитном поле мало в области параметров, где справедливо использование теории возмущений. Продемонстрирована перспективность использования мюонов для исследования влияния действительной части показателя преломления поляризованного вакуума на параметры излучение.
- 3. Построена численная модель для описания полевой ионизации, учитывающая режим подавления барьера. Результаты численного моделирования, с использованием данной модели, подтверждают предположение о том, что более тяжелые газы лучше подходят в качестве затравки для инициации КЭД-каскада.

- 4. Построена аналитическая модель КЭД-каскада во вращающемся электрическом поле. Выведено выражение для скорости роста КЭД-каскада. Полученное выражение находится в хорошем согласии с результатом численного моделирования в широком диапазоне напряженности лазерного поля.
- 5. Модель непрерывных радиационных потерь расширена на случай спиновых степеней свободы с учетом радиационных потерь. Показано, что времена, на которых данная модель применима, намного больше как характерных времен диссипации энергии, так и характерных времен набора пучком электронов поляризации.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Research opportunities at the upgraded HI γ S facility / H. R. Weller [et al.] // Progress in Particle and Nuclear Physics. 2009. Vol. 62, no. 1. P. 257–303
- 2. Isochronous storage ring of the New SUBARU project / A. Ando [et al.] // Journal of Synchrotron Radiation. 1998. Vol. 5, no. 3. P. 342–344.
- 3. Experimental evidence of quantum radiation reaction in aligned crystals / T. N. Wistisen [et al.] // Nature communications. 2018. Vol. 9, no. 1. P. 795.
- 4. Improved local-constant-field approximation for strong-field QED codes / A. Di Piazza [et al.] // Physical Review A. 2019. Vol. 99, no. 2. P. 022125.
- 5. Macchi A. Intense laser sheds light on radiation reaction // Physics. 2018. —Vol. 11. P. 13.
- 6. The Shanghai Superintense Ultrafast Laser Facility (SULF) Project / Z. Gan[et al.] // Progress in Ultrafast Intense Laser Science XVI. Cham: Springer International Publishing, 2021. P. 199–217. ISBN 978-3-030-75089-3.
- 7. Recent Progress on the Shanghai Superintense Ultrafast Laser Facility (SULF) at SIOM / X. Liang [et al.] // OSA High-brightness Sources and Light-driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS). Optica Publishing Group, 2020. HTh2B.2.
 - 8. Extreme Light Infrastructure—Nuclear Physics (Eli-np). http://eli-np.ro/.
- 9. ELI-Beamlines: extreme light infrastructure science and technology with ultra-intense lasers / B. Le Garrec [et al.] // High Energy/Average Power Lasers and Intense Beam Applications VII. Vol. 8962. SPIE. 2014. P. 89–96.
- 10. Apollon Project. https://portail.polytechnique.edu/luli/en/ cilexapollon/apollon.
 - 11. Vulcan 2020. https://clf.stfc.ac.uk/Pages/Vulcan-2020.aspx.
- 12. New horizons for extreme light physics with mega-science project XCELS / A. Bashinov [et al.] // The European Physical Journal Special Topics. 2014. Vol. 223. P. 1105–1112.
- 13. Exawatt Center for Extreme Light Studies (XCELS) / E. Khazanov [et al.] // High Power Laser Science and Engineering. 2023. Vol. 11, no. 1. P. 1–77.

- 14. Realization of laser intensity over 10 23 W/cm 2 / J. W. Yoon [et al.] // Optica. 2021. Vol. 8, no. 5. P. 630–635.
- 15. The Extreme Light Infrastructure (ELI) official website. http://www.eli-laser.eu.
- 16. Limitations on the attainable intensity of high power lasers / A. Fedotov [et al.] // Physical review letters. 2010. Vol. 105, no. 8. P. 080402.
- 17. QED cascades induced by circularly polarized laser fields / N. Elkina [et al.] // Physical Review Special Topics-Accelerators and Beams. 2011. Vol. 14, no. 5. P. 054401.
- 18. Bell A., Kirk J. G. Possibility of prolific pair production with high-power lasers // Physical review letters. 2008. Vol. 101, no. 20. P. 200403.
- 19. Electron dynamics and □ and e- e+ production by colliding laser pulses / M. Jirka [et al.] // Physical Review E. 2016. Vol. 93, no. 2. P. 023207.
- 20. Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves / A. Gonoskov [et al.] // Physical Review X. 2017. Vol. 7, no. 4. P. 041003.
- 21. Dipole pulse theory: Maximizing the field amplitude from 4 π focused laser pulses / I. Gonoskov [et al.] // Physical Review A. 2012. Vol. 86, no. 5. P. 053836.
- 22. Optimized multibeam configuration for observation of QED cascades / E. Gelfer [et al.] // Physical Review A. 2015. Vol. 92, no. 2. P. 022113.
- 23. Tamburini M., Di Piazza A., Keitel C. H. Laser-pulse-shape control of seeded QED cascades // Scientific reports. 2017. Vol. 7, no. 1. P. 5694.
- 24. Laser field absorption in self-generated electron-positron pair plasma / E. Nerush [et al.] // Physical review letters. 2011. Vol. 106, no. 3. P. 035001.
- 25. Nerush E., Kostyukov I. Y. Kinetic modelling of quantum effects in laser– beam interaction // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment. 2011. Vol. 653, no. 1. P. 7–10.
- 26. Mironov A. A., Fedotov A. M., Narozhny N. B. Generation of quantum-electrodynamic cascades in oblique collisions of ultrarelativistic electrons with an intense laser field // Quantum Electronics. 2016. Vol. 46, no. 4. P. 305.
- 27. Erber T. High-energy electromagnetic conversion processes in intense magnetic fields // Reviews of Modern Physics. 1966. Vol. 38, no. 4. P. 626.
- 28. Bonin K., Mcdonald K., Russell D. Proposal, For An Experimental, Study Of Nonlinear Thomson Scattering. 1986.
- 29. Dremin I. M. Cherenkov radiation and pair production by particles traversing laser beams // arXiv preprint hep-ph/0202060. 2002.
- 30. Macleod A. J., Noble A., Jaroszynski D. A. Cherenkov radiation from the quantum vacuum // Physical review letters. 2019. Vol. 122, no. 16. P. 161601.
- 31. Synergic Cherenkov-Compton radiation / S. V. Bulanov [et al.] // Physical Review D. 2019. Vol. 100, no. 1. P. 016012.

- 32. Schwinger J., Tsai W.-y., Erber T. Classical and quantum theory of synergic synchrotron-Čerenkov radiation // Annals of Physics. 1976. Vol. 96, no. 2. P. 303–332.
- 33. Fedotov, Alexander. Conjecture of perturbative QED breakdown at $\alpha\chi^{2/3}$ >1 / Alexander Fedotov // Journal of Physics: Conference Series. 2017. Vol. 826, no. 1. P. 012027
- 34. Prospect of studying nonperturbative QED with beam-beam collisions / V. Yakimenko [et al.] // Physical review letters. 2019. Vol. 122, no. 19. P. 190404.
- 35. Probing non-perturbative QED with electron-laser collisions / C. Baumann [et al.] // Scientific reports. 2019. Vol. 9, no. 1. P. 1–8.
- 36. Reaching supercritical field strengths with intense lasers / T. Blackburn [et al.] // New Journal of Physics. 2019. Vol. 21, no. 5. P. 053040.
- 37. Testing strong field QED close to the fully nonperturbative regime using aligned crystals / A. Di Piazza [et al.] // Physical review letters. 2020. Vol. 124, no. 4. P. 044801.
- 38. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse / Y.-F. Li [et al.] // Physical review letters. 2019. Vol. 122, no. 15. P. 154801.
- 39. Spin and radiation in intense laser fields / M. Walser [et al.] // Physical Review A. 2002. Vol. 65, no. 4. P. 043410.
- 40. Electron spin-and photon polarization-resolved probabilities of strong-field QED processes / Y.-Y. Chen [et al.] // Physical Review D. 2022. Vol. 105, no. 11. P. 116013.
- 41. Theory of radiative electron polarization in strong laser fields / D. Seipt [et al.] // Physical Review A. 2018. Vol. 98, no. 2. P. 023417.
- 42. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers / D. Del Sorbo [et al.] // Plasma Physics and Controlled Fusion. 2018. Vol. 60, no. 6. P. 064003.
- 43. Helicity transfer in strong laser fields via the electron anomalous magnetic moment / Y.-F. Li [et al.] // Physical Review Letters. 2022. Vol. 128, no. 17. P. 174801.
- 44. Photon polarization effects in polarized electron–positron pair production in a strong laser field / Y.-N. Dai [et al.] // Matter and Radiation at Extremes. 2022. Vol. 7, no. 1. P. 014401.
- 45. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process / K. Xue [et al.] // Fundamental Research. 2022. Vol. 2, no. 4. P. 539–545.
- 46. Pugacheva D., Andreev N., Cros B. Laser wakefield acceleration of polarized electron beams // Journal of Physics: Conference Series. 2016. Vol. 774, no. 1. P. 012107.

- 47. Pugacheva D. V., Andreev N. E. Effect of synchrotron radiation on the dynamics of electron spin precession in the process of laser-plasma acceleration // Quantum Electronics. 2018. Vol. 48, no. 4. P. 291.
- 48. Pugacheva D. V., Andreev N. E. Precession dynamics of the relativistic electron spin in laser-plasma acceleration // Quantum Electronics. 2016. Vol. 46, no. 1. P. 88.
- 49. Spin filter for polarized electron acceleration in plasma wakefields / Y. Wu [et al.] // Physical review applied. 2020. Vol. 13, no. 4. P. 044064.
- 50. Scaling laws for the depolarization time of relativistic particle beams in strong fields / J. Thomas [et al.] // Physical review accelerators and beams. 2020. Vol. 23, no. 6. P. 064401.
- 51. Spin-dependent radiative deflection in the quantum radiation-reaction regime / X. Geng [et al.] // New Journal of Physics. 2020. Vol. 22, no. 1. P. 013007.
- 52. Plasma and trap-based techniques for science with positrons / J. Danielson [et al.] // Reviews of Modern Physics. 2015. Vol. 87, no. 1. P. 247.
- 53. Uggerhøj U. I. The interaction of relativistic particles with strong crystalline fields // Reviews of modern physics. 2005. Vol. 77, no. 4. P. 1131.
- 54. The deuteron spin-dependent structure function g1d and its first moment / V. Y. Alexakhin [et al.] // Physics Letters B. 2007. Vol. 647, no. 1. P. 8–17.
- 55. Polarized positrons and electrons at the linear collider / G. Moortgat-Pick [et al.] // Physics Reports. 2008. Vol. 460, no. 4/5. P. 131–243.
- 56. Sokolov A., Ternov M. On polarization and spin effects in the theory of synchrotron radiation // Sov. Phys.-Dokl. Vol. 8. 1964. P. 1203–1205.
- 57. Baier V. Radiative polarization of electrons in storage rings // Soviet Physics Uspekhi. 1972. Vol. 14, no. 6. P. 695.
- 58. Radiative polarization dynamics of relativistic electrons in an intense electromagnetic field / Y. Tang [et al.] // Physical Review A. 2021. Vol. 103, no. 4. P. 042807.
- 59. Three-dimensional parallel particle-in-cell (PIC) code. https://github.com/QUILL-PIC/Quill.
- 60. Electromagnetic particle-in-cell code for the kinetic simulation of plasmas. https://github.com/SmileiPIC/Smilei.
- 61. Perelomov A., Popov V., Terent'Ev M. Ionization of atoms in an alternating electric field // Sov. Phys. JETP. 1966. Vol. 23, no. 5. P. 924–934.
- 62. Popov V. S. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory) // Physics-Uspekhi. 2004. Vol. 47, no. 9. —P. 855.
- 63. Current progress in developing the nonlinear ionization theory of atoms and ions / B. M. Karnakov [et al.] // Physics—Uspekhi. 2015. Vol. 58, no. 1. P. 3–32.

- 64. Golovanov A. A., Kostyukov I. Y. Formula for the ionisation rate of an atom or ion in a strong electromagnetic field for numerical simulation // Quantum Electronics. 2020. Vol. 50, no. 4. P. 350.
- 65. Kostyukov I. Y., Nerush E. Production and dynamics of positrons in ultrahigh intensity laser-foil interactions // Physics of Plasmas. 2016. Vol. 23, no. 9. P. 093119.
- 66. Zel'Dovich Y. B. Interaction of free electrons with electromagnetic radiation // Soviet Physics Uspekhi. 1975. Vol. 18, no. 2. P. 79.
- 67. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions) / S. V. Bulanov [et al.] // Physical Review E. 2011. Vol. 84, no. 5. P. 056605.
- 68. Bargmann V., Michel L., Telegdi V. Precession of the polarization of particles moving in a homogeneous electromagnetic field // Physical Review Letters. 1959. Vol. 2, no. 10. P. 435.
- 69. Thomas L. H. I. The kinematics of an electron with an axis // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1927. Vol. 3, no. 13. P. 1–22.
- 70. Strong signature of one-loop self-energy in polarization resolved nonlinear Compton scattering / Y.-F. Li [et al.] // Physical Review D. 2023. Vol. 107, no. 11. P. 116020.

СПИСОК ПУБЛИКАЦИЙ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

- A1. Artemenko I.I., Kostyukov I.Yu. Continuous-radiative-loss model for electron spin dynamics in the radiation-dominated regime // Physical Review A 2023. Vol. 108, no. 5. P. 052206.
- A2. *Kostyukov I.Yu*. Growth rate of QED cascades in a rotating electric field / I.Yu. Kostyukov, I.I. Artemenko, E.N. Nerush // Problems of Atomic Science and Technology. 2018. —P. 259–263.
- A3. Artemenko I.I. Global constant field approximation for radiation reaction in collision of high-intensity laser pulse with electron beam / I. Artemenko, M. Krygin, D. Serebryakov, E. Nerush, I. Kostyukov // Plasma Physics and Controlled Fusion. 2019. Vol. 61, no. 7. P. 074003.
- A4. Formation and dynamics of a plasma in superstrong laser fields including radiative and quantum electrodynamics effects / I.I. Artemenko [и др.] // JETP letters. —2016. Vol. 104. P. 883–891.
- A5. Artemenko I.I., Kostyukov I. Yu. Ionization-induced laser-driven QED cascade in noble gases // Physical Review A. 2017. Vol. 96, no. 3. P. 032106.
- A6. Artemenko I.I. Quasiclassical approach to synergic synchrotron—Cherenkov radiation in polarized vacuum / I.I. Artemenko, E.N. Nerush, I.Yu. Kostyukov // New Journal of Physics. 2020. Vol. 22, no. 9. P. 093072.

- А7. *Артеменко И.И. Костюков И.Ю. Неруш Н.Е.* Синхротрон-Черенковское Излучение в вакууме // XVIII научная школа «Нелинейные волны – 2018». — Нижний Новгород, 2018.
- А8. *Артеменко И.И. Костюков И.Ю. Неруш Н.Е.*, Излучение ускоренных электронов в синхротрон-черенковском режиме // Радиофизическая конференция 2018, ННГУ. Нижний Новгород, 2018.
- А9. *Артеменко И.И. Костюков И.Ю. Неруш Н.Е.*. Излучение ускоренных электронов в поляризованном вакууме // Двадцать третья научная конференция по радиофизике 2019, ННГУ. Нижний Новгород, 2019.
- А10. *Артеменко И.И. Костюков И.Ю. Неруш Н.Е.* Синхротрон-Черенковское излучение в вакууме // Нелинейные волны-2020. — Нижний Новгород, 2020.
- А11. *Артеменко И.И. Костюков И.Ю. Неруш Н.Е.* Новые методы ускорения частиц и экстремальные состояния материи // Межинститутский онлайнсеминар. Нижний Новгород, 2020.
- А12. Артеменко И.И. Костюков И.Ю. Неруш Н.Е. Численное моделирование спиновых эффектов при взаимодействии пусков с эм полями // Нелинейные волны-2022. Нижний Новгород, 2022

АРТЕМЕНКО Иван Игоревич

ИОНИЗАЦИОННАЯ ИНИЦИАЦИЯ КАСКАДОВ, СПИНОВЫЕ И РАДИАЦИОННЫЕ ЭФФЕКТЫ В СИЛЬНЫХ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ПОЛЯХ

Автореферат

Подписано в печать 20.02.2024 г. Формат $60 \times 90^{-1}/_{16}$. Усл. печ. л. 1,25. Тираж 100 экз. Заказ № 8(2024).

Отпечатано в типографии ФИЦ Институт прикладной физики им. А.В. Гапонова-Грехова РАН, 603950, Н. Новгород, ул. Ульянова, 46